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Wave-driven dynamo action in spherical magnetohydrodynamic systems
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Hydrodynamic and magnetohydrodynamic numerical studies of a mechanically forced two-vortex flow
inside a sphere are reported. The simulations are performed in the intermediate regime between the laminar
flow and developed turbulence, where a hydrodynamic instability is found to generate internal waves with a
characteristic m=2 zonal wave number. It is shown that this time-periodic flow acts as a dynamo, although
snapshots of the flow as well as the mean flow are not dynamos. The magnetic fields’ growth rate exhibits
resonance effects depending on the wave frequency. Furthermore, a cyclic self-killing and self-recovering
dynamo based on the relative alignment of the velocity and magnetic fields is presented. The phenomena are
explained in terms of a mixing of nonorthogonal eigenstates of the time-dependent linear operator of the
magnetic induction equation. The potential relevance of this mechanism to dynamo experiments is discussed.
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I. INTRODUCTION

It is well-established theoretically that magnetic fields,
which emanate from the Earth and from celestial bodies, are
generated by flows of electrically conducting fluids in their
interiors, a mechanism which is commonly referred to as the
magnetohydrodynamic (MHD) dynamo effect [1,2]. In re-
cent years, significant effort was devoted to the experimental
verification of dynamo theory in simply connected spherical
[3-5] and cylindrical [6,7] impeller-driven flows of liquid
sodium. While the latter setup has ultimately demonstrated a
self-excited dynamo, it has turned out that turbulence
strongly inhibits the dynamo process in both experiments. A
review on dynamo experiments is given in Ref. [8]. Detri-
mental effects of turbulence on the excitation threshold of
large-scale dynamos were confirmed by numerical simula-
tions of MHD systems with well-defined mean flows in
periodic-box geometry [9-12] as well as in spherically
bounded geometry [13-15].

In the present paper, we study numerically the regime
between turbulence and the laminar state of an electrically
conducting two-vortex flow inside a sphere, which is similar
to the flow realized in the Madison dynamo experiment
[3-5]. The structure of the paper is as follows. The numerical
model is presented in Sec. II. Section III discusses purely
hydrodynamic simulations, which are performed in the sub-
turbulent regime. It is found that a hydrodynamic instability
leads to traveling internal waves, their dominant component
being symmetric under rotations by 7. In Sec. IV, we turn to
MHD investigations of the flows introduced in the previous
section. It is found that the presence of the waves, which
correspond to smoothly oscillating large-scale fluctuations,
supports the dynamo instability. Artificially changing the
wave’s frequency yields a resonance effect, i.e., the dynamo
is found to operate most efficiently at certain frequencies,
whereas dynamo action ceases for frequencies which are too
low or too high. Moreover, a nonlinear dynamo is reported,
which undergoes a cycle of self-killing and self-recovering
events. We find that this behavior is related to phase shifts
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between characteristic magnetic and hydrodynamic oscilla-
tions, which are imposed during the transitions. These phase
shifts translate to changes in the relative alignment of the
velocity and magnetic fields. Section V concludes with a
discussion and interpretation of the numerically obtained re-
sults. We interpret the MHD phenomena in the framework of
a dynamo mechanism based on the mixing of nonorthogonal
eigenstates of the time-dependent linear operator of the in-
duction equation [16], thus, confirming its relevance to a
self-consistent dynamo model.

II. NUMERICAL MODEL

The magnetic (B) and velocity (v) fields, which describe
an incompressible electrically conducting fluid, are governed
by the induction (1) and the Navier-Stokes Eq. (2),

JB

E:Vx(va)+w2B, (1)
av o
E+(V-V)V=—VP+VVV+JXB+F, (2)

along with the constraints V-B=V-v=0. Here, \ is the mag-
netic diffusivity, p is the pressure, j= ,ual V X B is the current
density, v is the viscosity, and F is a forcing term. A constant
mass density p=1 is assumed. In nondimensional form, the
problem is characterized by two control parameters, the Rey-
nolds number Re=LVv~! and the magnetic Reynolds number
Rm=LVA~!, where L and V denote length and velocity
scales, which are characteristic of the system under consid-
eration. We choose L=1 and V=v,,, where vrms=\«"@ is
the spatial rms velocity. Here, the angle brackets denote av-
eraging in space, and the overline denotes averaging in time,
which is performed during the quasistationary phase of the
flow after all initial bifurcations. The characteristic time
scale of the flow is given by the eddy turnover time 7,
=L/V, whereas the magnetic diffusion time 7,=Rmr, is the
time scale relevant to the magnetic field.
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We solve numerically the MHD Egs. (1) and (2) in a
sphere, using the parallel version of the DYNAMO code
[13,17]. It employs the standard pseudospectral method
based on a poloidal-toroidal decomposition of the vector
fields in combination with spherical harmonic expansions.
Outer boundary conditions are the potential field solution for
the magnetic field, and, unless stated otherwise, the zero-slip
condition for the velocity field. The forcing is designed to
produce an s22 type of flow [18], which consists of two in
the toroidal direction counter-rotating hemispherical cells
with poloidal circulation in each cell, directed outward to the
poles and inward in the equatorial plane. It is given by an
axisymmetric localized body force F kept constant in time,
which reads in a cylindrical coordinate system (s, ¢,z) as

F,=0,

s
Fy,=¢€ sgn(z){ﬁr;3 sin— + y] ,
2rd

F.=(1- E)sgn(z)[sinls + 5} ) (3)
raq

Assuming a sphere of radius r=1, the driving is applied
within 0.25<z|<0.55, s<r,=0.29, with the parameters
kept constant at €=0.1, y=0.05, and 6=0.3. For sufficiently
large Rm, the resulting flow is a dynamo; the ({=m=1) mag-
netic eigenmode growing fastest. The generation of this
transverse dipole can be understood in the axisymmetric flow
using a simple frozen-flux picture based on stretching, twist-
ing, and folding of magnetic field lines [19].

In all simulations, the spherical harmonic expansions are
triangularly truncated at degree and order €, =my,=20,
while 160 uniformly spaced radial points are used. To verify
the simulation results obtained at the aforementioned reso-
lution, we have repeated a nonlinear run (the computation of
flow C, which is introduced in the following section) using
€ nax=Mmax=30 and 320 grid points in radial direction. The
bifurcations toward flow C as well as the growth rate of the
magnetic field in the MHD case were fully reproduced,
which indicates that converged solutions are obtained al-
ready at the coarser resolution. Moreover, power spectra of
the velocity fields in terms of € show a dropoff by three to
four orders of magnitude between the dominant and the high-
est wave number. The magnetic field is resolved similarly
well. Relevant spectra are shown and discussed in the fol-
lowing sections (cf. Figs. 4 and 12). After having introduced
the numerical setup, we now turn to an investigation of the
hydrodynamics of the flow before we consider full MHD
cases.

III. HYDRODYNAMIC STUDIES

We first investigate the dynamics of the unmagnetized
flow, i.e., Eq. (2) is integrated forward in time with B=0.
Starting from a fluid at rest, momentum is injected by the
body force F, and the time integration is performed until a
statistically stationary state is reached. This procedure is re-
peated to scan over various decreasing viscosities, thus, in-
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FIG. 1. (Color online) Time traces of vy, for four s2¢2 flows
driven by the body force F, at Re being moderately above the stable
region Re <65, illustrating bifurcation sequences.

creasing Re. For Re <65, the flow reaches a stationary axi-
symmetric (m=0) state. Above this threshold, the flow
becomes hydrodynamically unstable. To exemplify subse-
quent temporal transitions, Fig. 1 shows time traces of v, at
Re=79,88,101,128, the quasistationary states being labeled
B, C, D, and E. In each case, the flow first reaches an axi-
symmetric configuration, which is characterized by an initial
plateau (A). Simultaneously, nonaxisymmetric modes with
even ¢ and zonal wave number m=2 grow fastest at an ex-
ponential rate. Shortly before saturation occurs, the symme-
try breaking becomes visible in physical space near the polar
regions of the sphere, as indicated in Fig. 2(a). The previ-
ously circular cross sections of the jets toward the poles are

( (b) K
(d)

FIG. 2. (Color online) Ilustrations of the symmetry breaking in
the flow toward state D. (a) Poloidal cross section of the energy
density «v? during the axisymmetric phase A. Arrows indicate the
region, where elliptical stretching occurs. [(b)—(d)] Time series de-
picting the spatial structure of large amplitudes of v inside the
sphere »<<0.75 as the instability grows.
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FIG. 3. (Color online) Mollweide projection of the radial com-
ponent of a velocity field snapshot at 90% of the sphere’s radius
during the statistically stationary state D. Arrows indicate the direc-
tion of wave propagation.

stretched elliptically as it is depicted in Figs. 2(b)-2(d) for
the flow D. The nonlinear saturation of this instability mani-
fests itself in a relaxation of v,y (cf. Fig. 1). In physical
space, traveling waves with m=2 symmetry emerge; their
spatial structure being illustrated in Fig. 3. The wave propa-
gation is directed opposite to the sense of rotation of the
mean flow in the individual hemisphere as prescribed by
the driving, with the wave vector pointing in the zonal direc-
tion. With increasing Re, the latitudinal extent of the wave
grows toward the equator, coupling the two hemispheres and
causing oscillatory fluid motions (cf. Fig. 1, states C and D
compared to state B). As a result, the wave frequency de-
creases with increasing Re. With Rm=~44 (see below), the
frequencies in the laboratory frame turn out to be fast on the
resistive time scale, namely, f-= 19.087';1=0.437';l and fp
~16.71 7';1 :0.397';1. For Re > 125, turbulence develops, and
the m=2 wave feature loses its clear structure (state E).
Figure 4 displays time-averaged energy spectra of the
flows C and D in terms of spherical harmonic degree € and
order m. The time averaging was performed for several hun-
dred 7, to assure convergence. The € spectra in Fig. 4(a)
peak at €=2 for both flows, which is due to the imposed
forcing. The spectra are overall similar except for the
strength of the /=1 modes, which refer to global circulation;
however, these modes are dynamically not important in flow
C and even less in D due to their small amplitudes. The
spectra of flow C drop off somewhat faster than those of flow
D, which is to be expected due to the larger value of the
kinematic viscosity in run C. The spectra in terms of the
order m shown in Fig. 4(b), however, yield differences be-
tween C and D concerning the amplitude of the modes with
odd wave numbers. In both cases, the spectra peak at m=0,
which is due to the axisymmetric background flow. The
dominant peak connected with nonaxisymmetric modes is
found at m=2 and caused by the wave feature followed by
peaks at higher harmonics with even m. The origin of the
preference for even modes in flow D remains unclear. During
the initial bifurcation sequence, the amplitudes of the odd m
modes drop off suddenly around 7,=~70 after a phase spec-
trally similar to C before the statistically stationary state D
(Re=101) is reached. The corresponding change in the flow
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FIG. 4. (Color online) Time-averaged spectra of the kinetic-
energy density in the flows C and D as functions of spherical har-
monic degree (a) and order (b).

becomes apparent in Fig. 1 as a change in the oscillatory
behavior of the respective time trace. Conversely, the flow C
at Re=88 starts off with odd m modes at small amplitude
after the initial transition A. The respective time trace in Fig.
1 shows regular oscillations until, at 7,~210, odd m modes
have grown sufficiently strong to become dynamically im-
portant. The change in the flow toward the statistically sta-
tionary state C manifests itself in a more irregular time trace
of v, Flows with metastable states switching between the
characteristics of flow C and D were not observed, although
this possibility may exist. It should be noted that when going
to higher Re, the m spectra tend to be smoothed. A local peak
at m=2 is still found and can be interpreted as the signature
of the most unstable modes excited by the hydrodynamic
instability.

In the case of flow D, the temporal evolution of the domi-
nant components of the spectrum is shown in the upper panel
of Fig. 9. The time trace of the (€=2,m=0) axisymmetric
background flow [which will be abbreviated (2,0) in the fol-
lowing] is modulated sinusoidally at frequency fp, via non-
linear interactions with other modes. The m=2 wave feature
corresponds to modes oscillating at a time-periodic nonsinu-
soidal pattern at an amplitude, which is about 10% of the
amplitude of the (2,0) background flow. In the case of flow
C, the picture is overall similar, although the time traces
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show different characteristics concerning their periodicity
and shape.

Additional numerical experiments were performed to bet-
ter understand the origin of the wave phenomenon. Outer
shear layers, which exist due to the zero-slip condition on the
velocity field, prove to be crucial for the wave generation.
This boundary condition requires the three vector compo-
nents of the velocity field to be zero at the outer boundary. It
is intended to be an approximation of the experimental real-
ity, where liquid sodium is confined by a solid wall. Apply-
ing the stress-free boundary condition instead in a numerical
experiment while leaving the forcing F unchanged funda-
mentally alters the nature of the hydrodynamic instability.
The stress-free boundary condition requires the radial com-
ponent of the velocity field to be zero at the boundary,
whereas the angular components evolve under the constraint
of zero stress. As a result, a flow pattern with a strong zonal
flow next to the boundary develops in each hemisphere. Sta-
tionary states with waves comparable to the flows C and D
are not observed. These findings support the potential rel-
evance of the results presented in this paper to existing dy-
namo experiments, where boundary layers with strong shear
exist in the flows next to the outer walls.

Moreover, the fact that s272 flows were studied in the past
by several groups, each of them using slightly different forc-
ing functions or prescribed flows, motivates us to investigate
the role of the forcing term on the wave generation. Applying
the zero-slip condition, wavy states similar to C and D are
found in the subturbulent regime when the flow is driven by
the localized body force given in [13,14], and, similarly,
when the global 5272 profiles discussed in [18] are employed
to drive the flow. In addition to the axisymmetric component,
nonaxisymmetric m=2 modes are found to dominate in these
flows; however, modes with m=1 and m=3 wave numbers
are dynamically important as well. A main difference be-
tween the three forcing schemes consists in the distance be-
tween the active region, where momentum is injected, and
the outer boundary. This distance is largest in our impeller
model [Eq. (3)] and is chosen to be smaller in the latter
forcing schemes. The decrease affects the thickness of the
boundary layer and thereby the rate of strain, which in turn
may govern which zonal mode m is most unstable. A final
comment on the influence of the forcing is made on the
structure of the magnetic field in case of a dynamo. It turns
out that a flow forced by Eq. (3) favors an m=1 dipole mode
in the laminar case, in the intermediate subturbulent range on
which we focus in the present paper, as well as in the pres-
ence of developed turbulence. An m=0 axial dipole as it was
reported in [13,14] has not been found using Eq. (3). We
have, however, numerically confirmed its existence in turbu-
lent flows when the forcing reported in [13,14] is applied.

A more detailed investigation of the hydrodynamics of the
5212 flow is certainly required to shed light on the plausible
conjecture that the previously discussed hydrodynamic insta-
bility and wave formation are universal features of the
spherically bounded s2¢2 flow. The corresponding study,
however, goes beyond the scope of the present paper. We
now proceed toward the actual goal of the paper, namely, the
investigation of the dynamo properties of the subturbulent
flows C and D.
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FIG. 5. (Color online) Energies of the magnetic field over time,
from simulations (i)—(iii) based on the flow C (Re=88, Rm=44).

IV. MHD INVESTIGATIONS

The 5212 class of dynamos has been the focus of several
numerical investigations pioneered by the work of Dudley
and James [18], who solved the induction equation for a
stationary prescribed two-vortex flow. Later—mainly con-
centrating on the role of turbulence on the dynamo process—
fully time-dependent flows in nonlinear MHD simulations
were studied [13-15]. Until now, however, the effect of
smoothly fluctuating fluid motions below the transition to
developed turbulence has not been considered explicitly.
This motivates us to investigate the temporal evolution of
seed magnetic fields in the flows C and D. To this end, the
magnetic field B is initialized with pseudorandom noise at
small amplitude, and the induction equation is solved nu-
merically using four different types of velocity fields v based
on C and D: (i) time-dependent flows v(x,1), i.e., the coupled
Egs. (1) and (2) are integrated; (ii) snapshots v(x,t,),i
=1,...,n of the flows kept fixed in time; (iii) time-averaged
velocity fields V=1 f;g*Tv(x,t)dr, with 7> 10%7,; (iv) con-
secutive snapshots of the flows iterated at variable rates,
which allows to examine the effect of the wave frequency on
the magnetic field’s growth rate. Practically, the runs of type
(iv) are performed by subsequently reading previously saved
snapshots from hard disk, while solving Eq. (1). Unless
stated otherwise, all MHD runs discussed in the following
are performed at Rm=~44.

We first consider the flow C for which Fig. 5 summarizes
the results of the numerical experiments (i)—(iii). Eight ran-
domly selected snapshots—as indicated by the inset—show
decaying magnetic fields. Moreover, the mean flow is not a
dynamo. Only the time-dependent flow (i) shows a growing
magnetic field solution. Clearly, the presence of time depen-
dence in the velocity field in the form of periodic wave mo-
tion causes the magnetic field to grow. In fact, in the regime
around Re= 100, the dynamo threshold of the mean flow is
Rm,(V) = 55, which is significantly larger than the threshold
of the time-dependent flows, being Rm.~32. Figure 6 dis-
plays the growth rate as a function of the relative wave fre-
quency f/fc obtained by performing experiment (iv). For
comparison, the growth rate calculated from the self-

056304-4



WAVE-DRIVEN DYNAMO ACTION IN SPHERICAL...

02 r ]

“V/Vd
S
N o

04 f 1
06 runs of type (iv) —— |
self-consistent run (i) —I—
-0.8 .
0.1 1 10

f/c

FIG. 6. (Color online) Growth rate of the magnetic field, nor-
malized by the negative free dipole decay rate, as a function of the
relative wave frequency f/fc. The simulations were performed
based on flow C at Rm=44.

consistent run (i) is included. A window with positive growth
rates (f/fc=0.55,...,6.0) exists, which contains two local
maxima at f/f-=0.9 and f/f-=4.4 being symptomatic of
resonant behavior. The first maximum happens to be in good
agreement with the frequency of the hydrodynamic waves in
run (i). Negative growth rates occur when the wave is either
too fast or too slow. The latter finding reflects the fact that
snapshots of the flow are not dynamos. Iterating through the
velocity field snapshots in reversed order, i.e., inverting the
direction of wave propagation without changing the shape of
the waves, causes seed magnetic fields to decay in all inves-
tigated cases in the range f/f-=-10.0,...,-0.1. The obser-
vation of magnetic field amplification in a spherically
bounded MHD dynamo model induced by hydrodynamic
waves represents the key result of our work. A power spec-
trum of the growing magnetic field obtained from the non-
linear MHD simulation of flow C is given in Fig. 12. The
magnetic field is clearly dominated by the (1,1) dipole mode.
The dynamo based on experiment (i) saturates to a stationary
state without any time dependence in the velocity and mag-
netic fields. The kinetic and magnetic energies are roughly in
equipartition. Before we turn toward a discussion of the
physics governing the magnetic field growth in flow C, we
perform an analogous investigation of the flow D.

An intriguing phenomenon is found when the evolution of
magnetic fields in flow D is studied. Performing run (i), a
seed magnetic field first grows exponentially at a normalized
rate yp=~0.46, as it is indicated by the time trace of the
magnetic energy in Fig. 7. Nonlinear feedback via the Lor-
entz force acts starting from 7,~4.0 for a period of ~0.57,
during which the energy ratio peaks at E,,,,/ Ey;,~=0.04 (la-
beled “NL” in Fig. 7). A transition occurs to a metastable
state D', which has a lifetime of about 27,~907,. The MHD
system no longer sustains the dynamo process, as the expo-
nential decay of the magnetic field at rate yp,=~—0.65 indi-
cates, until it recovers back to the initial state D, which again
allows for magnetic field growth at 7yp, thus, closing the
cycle. In the following and unless stated otherwise, the labels
D and D’ refer to the growth and decay phases, as indicated
in Fig. 7.
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FIG. 7. (Color online) Time traces of kinetic and magnetic en-
ergies, the flow initially being in state D (Rm=44). The inset shows
the kinetic energy during the transition from growth to decay.

To investigate the nature of the cyclic behavior, we have
repeated the numerical experiments (ii)—(iv) using flows dur-
ing both the growth phase D and the decay phase D'. The
mean flows and field snapshots were obtained from run (i) at
times sufficiently far away from the transitions and while the
magnetic field was negligibly small. Experiment (ii) shows
growing and decaying solutions for the magnetic field in
both cases D and D’. This result does not disagree with the
result obtained from flow C at Rm=44 since a similar situa-
tion can easily be constructed using D by decreasing Rm
below 44, i.e., all selected snapshots in experiment (ii) are
not dynamos, whereas a random seed magnetic field grows
in time. The mean flows during phase D and D’ are identical
by visual inspection, which explains the finding that experi-
ment (iii) yields identical decay rates ypy=—0.31. Note that
during the phase D’ in run (i), the magnetic field decays
twice as fast as it does in the mean flow. Finally, experiment
(iv) yields resonance behavior qualitatively similar to flow C.
To shed more light on the nature of the transitions, further
investigations are presented in the following. The main ques-
tion to be addressed is how the velocity field, the magnetic
field, or the combination of both is altered during the transi-
tions.

“Self-killing” (though—to our knowledge—no “self-
recovering”) nonlinear dynamos have been reported previ-
ously [20,21]. Their mechanism is based on a modification of
the flow due to the action of the Lorentz force away from an
initial state, which has supported magnetic field growth to-
ward a second solution of the nonlinear Navier-Stokes Eq.
(2), which prevents magnetic field growth. During the tran-
sition from D to D’, additional exponentially decaying
smooth fluid motions on a slow time scale are excited, as the
inset in Fig. 7 indicates. However, the magnetic field contin-
ues to decay at constant rate 7y, while the fluid perturbation
is damped to very small amplitude, indicating that this per-
turbation might be unimportant. This hypothesis will be con-
firmed by the investigations presented below.

To scrutinize the transition, we have performed the fol-
lowing numerical experiments (a)—(c) using the solutions vy,
and/or By, of the system at time 7,~4.2 as initial conditions
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in the MHD equations. The field By; was rescaled to infini-
tesimal amplitude, comparable to the seed fields used in pre-
vious runs. Hence, the structure of the magnetic field is pre-
served, whereas an immediate backreaction on the flow is
avoided. The experiments and results are as follows. (a) In-
tegration of the MHD equations, using vy and the rescaled
By as initial conditions, exhibits the decay phase at rate yp.
[which is of the same duration as in (i)] followed by the
transition to growth. (b) Integration starting from vy, and an
infinitesimal pseudorandom magnetic field yields magnetic
field growth at rate yp. (c) Integration starting from a veloc-
ity field obtained during D’ different from vy; and from the
rescaled By, (i.e., introducing a phase shift between the self-
consistently adjusted configurations of the fields) leads to the
same result as in run (b).

We have further investigated the transitions by examining
explicitly the temporal characteristics of the spectrum. To
this end, Fig. 8 displays time traces of the sum of the
volume-integrated poloidal and toroidal energies in the
dominant modes during the transition from D to D'.

As it was already pointed out in the previous section on
hydrodynamics, the (2,0) time trace of flow D is modulated
sinusoidally. Hence, it is suited to derive the phase relative to
a mode, which oscillates similarly in time. In Fig. 8(a), the
dominant modes of kinetic energy obtained from the MHD
simulation are plotted over time. These are the (2,0) mode,
which is responsible for the axisymmetric background flow,
and the three strongest (m=2) modes, which account for the
bulk of the nonaxisymmetric wave feature. In addition, the
(2,0) time trace from a simulation without magnetic field is
shown. The generating run was started using an initial con-
dition obtained from the MHD simulation at 7,=2.0 when
the magnetic field was negligibly small. It is seen easily by
comparing the (2,0) curves that the nonlinear feedback due
to the Lorentz force causes a phase shift by r relative to the
unperturbed flow. Except for this phase shift, the spectral
characteristics of the flow remain unaffected. Figure 8(b)
shows the dominant magnetic energy modes during the same
time interval and, in addition, the time trace of the (2,0)
kinetic-energy mode from Fig. 8(a). Before the transition
takes place, the oscillations in the dominant modes of the
magnetic and the velocity field are in phase, as it is indicated
by vertical lines. After the transition, the curves oscillate out
of phase by 7. In particular, the magnetic energy modes
continue to oscillate at their characteristic frequencies during
the transition, whereas the kinetic-energy modes experience
a phase shift by 7. This phase shift is related to a change in
the relative alignment of the velocity and magnetic fields,
which will be discussed in detail in the following paragraph.
The relevant spectral components during the transition from
D’ to D are displayed in Fig. 9.

It is readily seen in subfigure (a) that the velocity field
modes are completely unaffected by the change from decay
to growth of the magnetic field. The magnetic time traces
switch from out-of-phase oscillations to oscillations which
are in phase with the dominant hydrodynamic oscillations as
subfigure (b) indicates.

It is illustrative to translate the phase shifts to the respec-
tive changes in physical space.

To this end, we begin with an investigation of the velocity
field during the transition NL. The panels (a) and (c) in Fig.
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FIG. 8. (Color online) (a) Volume-integrated spectral energies as
functions of time of the four dominant modes in flow D during the
transition from D to D’ in the full MHD simulation (cf. Fig. 7). For
comparison, the time trace of the (2,0) mode of a magnetically
unperturbed purely hydrodynamic simulation of the same flow is
included, rescaled to 50% of its amplitude. The scaling is indicated
by an asterisk ( *). Vertical bars indicate the phase shift, which is
imposed on the hydrodynamic oscillation. (b) Spectral energies as
functions of time of the three dominant modes of the magnetic field
during the transition from D to D'. For comparison, the (2,0) mode
of the velocity field is displayed [cf. subfigure (a)]. Vertical bars
illustrate a phase shift, which develops between the oscillations of
the magnetic energy and the oscillations of the kinetic energy. The
magnetic energy ( *) was scaled by a factor of 10.

10 show snapshots of the radial component of the velocity
field taken at maxima of the (2,0) kinetic-energy time trace,
before and after the transition [viz., Fig. 8(a)]. For the fol-
lowing discussion, it is useful to introduce a virtual plane on
a circle of longitude, which is defined by the z axis and the
longitudinal coordinate at which the counterpropagating
wave features in the upper and lower hemispheres “meet.”
The position of the plane varies between runs due to the
rotational symmetry the flow has about the z axis before it
becomes hydrodynamically unstable. However, once states,
such as C or D, are reached, this plane stays fixed in space
since the waves counterpropagate at the same velocity in
each hemisphere. Relating this virtual plane to the oscilla-
tions in Fig. 8(a), the wave features reach it at maxima of the
(2,0) kinetic-energy time trace. From Figs. 10(a) and 10(c), it
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FIG. 9. (Color online) (a) Dominant modes of the velocity field
during the transition from D’ to D [viz., Fig. 8(a)]. (b) Dominant
modes of the magnetic field during the transition from D’ to D
[viz., Fig. 8(b)]. The (2,0) velocity mode from subfigure (a) is dis-
played for the purpose of illustrating the phase angle relative to the
magnetic dipole mode. For practical reasons, the amplitude of the
kinetic (magnetic) energy was scaled by a factor of 973 (10'9).

is evident that the nonlinear feedback during NL due to the
Lorentz force rotates the plane by /2 about the z axis,
which translates to the phase shift by r relative to the unper-
turbed flow, as indicated in Fig. 8(a). The panels (b) and (d)
of Fig. 10 show the radial magnetic field snapshots associ-
ated with the velocity fields shown in the panels (a) and (c).
The magnetic field is dominated by an (1,1) equatorial dipole
mode, which is evident from the flux patches peaking on the
equator. The magnetic field’s geometry changes periodically
in time during wave motion; however, the equatorial dipole
stays fixed sufficiently far from the transitions, which can be
understood from the same symmetry argument as in the case
of the aforementioned plane. The magnetic equatorial dipole
does not change its position during NL, as a comparison of
the panels (b) and (d) in Fig. 10 yields. Comparing the panels
(a) and (b) in Fig. 10, the plane characterizing the wave
motion is coaligned with the equatorial dipole before the
transition. After NL, the plane and the dipole are oriented
perpendicular to each other due to the changes in the velocity
field [viz., Figs. 10(c) and 10(d)]. Obviously, the alignment
of the velocity field relative to the magnetic field is decisive

PHYSICAL REVIEW E 80, 056304 (2009)

t=4.576 (c)

400 067 033 4000 4033 4067  +1.00 a0 087 033 4000 403 1067 +1.00

FIG. 10. (Color online) Radial vector component of the velocity
field [(a) and (c)] and the normalized magnetic field [(b) and (d)] at
90% of the sphere’s radius before [(a) and (b)] and after [(c) and
(d)] the first transition from growth to decay, labeled NL. The snap-
shots were taken at maxima of the (2,0) Kinetic-energy time trace
[viz., Fig. 8(b)].

if the magnetic field grows or decays in time. Let us continue
with following the changes to the fields during subsequent
transitions. Figure 11 shows snapshots of the normalized ra-
dial magnetic fields during the second growth phase, the sec-
ond decay phase, and the third growth phase. During the
transition from decay to growth at 7,=~6.7, the equatorial
magnetic dipole rotates by /2 as it is evident from compar-
ing Figs. 10(d) and 11(a), whereas the flow remains in the
state indicated by Figs. 9(c) and 10(a). Hence, the magnetic
dipole component and the plane characterizing the wave mo-
tion are parallel to each other again, which results in a mag-
netic field growth. Once the magnetic field has grown suffi-
ciently strong, which is the case at 7,~10.1, the wave
motion is pushed toward the initial state as depicted in Fig.
10(a), while the equatorial dipole keeps its position [cf. Fig.
11(b)]. The magnetic field decays and starts growing again
when its equatorial dipole component rotates by 77/2 to reach
coalignment with the plane characterizing the wave motion

() t=8.174 t=12317 (b)

400 067 03 4000 403 067 4100

FIG. 11. (Color online) Radial vector component of the normal-
ized magnetic field at 90% of the sphere’s radius during the second
growth phase (a), the second decay phase (b), and the third growth
phase (c).
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FIG. 12. (Color online) Normalized and time-averaged spectra
of the magnetic energy density during the kinematic (growth) phase
in the flows C and D as functions of spherical harmonic degree (a)
and order (b).

[cf. Figs. 10(a) and 11(c)]. In summary, the equatorial dipole
tilts by /2 about the z axis between subsequent growth
phases, which adds up to a field reversal after two cycles [cf.
Figs. 10(b) and 11(c)]. The magnetic induction equation (1)
allows for such field reversals since if B is a solution for a
given flow, —B is a valid solution as well. Whenever the
magnetic field reacts back on the velocity field, the flow is
forced to switch between the configurations shown in Figs.
10(a) and 10(c). The dynamo based on flow C operates simi-
larly to flow D during the growth phase, as it is shown in
Figs. 10(a) and 10(b), however, does not show cyclic behav-
ior.

The power spectrum of the growing magnetic field in sys-
tem D is given in Fig. 12. The power spectrum of the decay-
ing magnetic field is virtually undistinguishable and was
therefore not included. Compared to C, the odd m modes are
more pronounced, which is due to the preference for even m
modes in flow D.

Nonlinear saturation to a stationary state with E,,,.,/ Ey;y,
=~ 1.2 is reached above Rm=51. Time traces of the dominant
kinetic-energy modes during saturation are shown in Fig. 13.
Compared to the previously discussed cyclic dynamo, the

PHYSICAL REVIEW E 80, 056304 (2009)
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FIG. 13. (Color online) Saturation of a dynamo based on flow D
at Rm=51. The system evolves toward a completely stationary state
as it is illustrated by time traces of the dominant kinetic (a) and
magnetic (b) modes.

system saturates toward a completely stationary state without
any oscillations similar to the saturated dynamo state of flow
C at Rm=44.

We now turn to a discussion of the physics results.

V. DISCUSSION

Our numerical investigations indicate that magnetic field
amplification generated by time-periodic nonaxisymmetric
m=2 hydrodynamic waves is relevant to the large-scale dy-
namo process inside a spherical fluid conductor. These waves
emerge due to a hydrodynamic instability, which breaks the
rotational symmetry of the flow. The flow itself is driven by
an axisymmetric body force and subject to the zero-slip outer
boundary condition in order to mimic a situation similar to
the Madison dynamo experiment. Several bifurcation se-
quences toward different statistically stationary flows with
m=2 waves are observed, depending on the fluid Reynolds
number. The numerical investigations are performed in the
intermediate regime between the laminar flow and developed
turbulence, which facilitates the identification of the domi-
nant physical effects.

Let us briefly reiterate the key results, which were ob-
tained by solving the induction equation using the aforemen-
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tioned subturbulent flows. At a given magnetic Reynolds
number, the time-averaged flows as well as snapshots of the
flows are not dynamos, whereas the time-dependent flows
with wave motion do show dynamo action. By variation in
the wave frequency, maxima in the efficiency of the dynamo
process are identified, as well as the breakdown of the dy-
namo for frequencies, which are too low or too high. More-
over, one of the several possible statistically stationary states
of the flow shows cyclic dynamo action. We find that the
transitions between magnetic field growth and decay cru-
cially depend on the phase angle between characteristic os-
cillations in the velocity and magnetic energy modes, which
translates to changes in the relative alignment of the fields in
physical space. Hence, system D is different from the self-
killing dynamos, which have been found previously [20,21].

These phenomena are symptomatic of dynamo action
based on non-normal growth [16]. Non-normal growth refers
to perpetual growth due to the mixing of nonorthogonal
eigenstates of the time-dependent linear operator £(f) of the
induction equation, which can formally be written as JB/dt
=L(¢)B. If the time dependence in L(r) given by a nonsta-
tionary flow is adequate, perpetual growth of magnetic field
modes is possible even if the magnetic field would decay in
the absence of time dependence. Such mixing of nonorthogo-
nal eigenstates was shown to act as an efficient driver for
dynamo action in Ref. [16], thereby, identifying a novel dy-
namo mechanism different from Lagrangian chaos or the
a-effect. Using an infinite two-dimensional periodic drifting
velocity field, which is no dynamo without drift at a given
Rm, it was demonstrated that the velocity field supports
magnetic field growth for drift velocities not being too fast or
too slow. The analogy between our results and the results
presented in Ref. [16] strongly supports the conjecture that
non-normal growth is responsible for the magnetic field gen-
eration in the s2¢2 flow with wave motion. Interestingly, flow
C exhibits a wave frequency close to a maximum in dynamo
efficiency (cf. Fig. 6). This happens by chance since the
wave feature is a hydrodynamic phenomenon and, hence, is
independent of a weak seed magnetic field.

The observed saturation of the s272 dynamo to a state
without wave motion confirms the relevance of the adjust-
ment of the wave frequency during the saturation process
[16] (cf. Fig. 13).

Increasing the Reynolds number above 125 leads to a su-
perposition and interaction of the m=2 waves with structures
at larger wave numbers. Turbulence develops, which mani-
fests itself in an increase in the critical magnetic Reynolds
number Rm,(Re), as it was shown numerically for 5212 sys-
tems [13-15]. This increase in the stability curve due to tur-
bulence is a big challenge for laboratory dynamo experi-
ments, which use simply connected flows [3-8]. Liquid
sodium, which is preferred as a working fluid, has a mag-
netic Prandtl number Pm=Rm/Re on the order of 1073 [19].
Hence, in order to achieve magnetic Reynolds numbers suf-
ficiently large for self-excitation, the experimental flows are
vigorously turbulent with Reynolds numbers Re > 10°, inac-
cessible to any numerical simulation. Therefore, only ex-
trapolations of Rm,(Re) can be done. In numerical studies of
dynamos with Pm<{1 conducted in infinite periodic boxes,
which are usually computationally less expensive than simu-

PHYSICAL REVIEW E 80, 056304 (2009)

lations in spherical geometry but lack realistic boundary con-
ditions, the stability curve Rm.(Re) was shown to exhibit a
saturation to a plateau after an initial increase for large-scale
dynamos [9-12], and similarly for the fundamentally differ-
ent small-scale dynamo driven by nonhelical random forcing
(cf. [22] and the references therein). In spherically bounded
large-scale dynamos, such as the system we are focusing on
in the present study, the question if and at which level the
dynamo threshold saturates to a plateau at large Re has yet to
be investigated. Our study shows that field generation due to
wave motion is important in the context of the dynamo in-
stability. Beneficial effects are shown to exist in the subtur-
bulent regime at low Reynolds numbers of about 100. The
question most interesting to experimenters is, of course, if
these results can be transferred to laboratory dynamos. Simu-
lation results obtained for Reynolds numbers above 1000 are
encouraging since we still find a pronounced peak at m=2 in
the spectra of turbulent velocity fields. This indicates that
remnants of the m=2 waves could be present in the form of
coherent structures in experimental flows and potentially act
as a driver for magnetic field growth. A modification one
might suggest in order to exploit the findings of this paper to
improve s22 setups is the installation of deflector baffles in
front of the impellers designed to force flow components
with m=2 symmetry on top of the axisymmetric background
flow. These baffles could then be rotated about the impeller
axis at variable frequency, which would allow to search for
an optimum in frequency similar to the study presented in
Fig. 6.

Growing and transiently decaying magnetic solutions are
supported by the flow D. The question if the magnetic field
grows is related to an alignment problem of the velocity and
magnetic fields. The configuration of v and B depicted in
Figs. 10(c) and 10(d) constitutes a poor state vector of the
system since subsequently applying the linear operator £(r)
of the induction equation on B in order to evolve the system
forward in time—which is done by the numerical code—
causes the magnetic field to decay. Note that the time depen-
dence of L() is given by the temporal evolution of the ve-
locity field starting from the configuration shown in Fig.
10(c). The modification of the flow during the transition from
growth to decay is certainly caused by the Lorentz force;
however, the reason for the rotation of the magnetic dipole
during the transition from decay to growth is not obvious.
Slow diffusion of the magnetic field into the preferred posi-
tion, which is then amplified to finally take over, is a possible
explanation.

Let us finally discuss the relation of the cyclic dynamo D
to the competing axial and transverse dipole modes, which
are reported for an s2r2 flow in [14]. Reference [14] de-
scribes the generation of an axisymmetric magnetic field
component via nonaxisymmetric turbulent fluctuations in the
presence of an axisymmetric s2¢2 background flow. It is
shown that, first, an equatorial dipole magnetic field is gen-
erated, which creates via Lorentz braking an m=2 velocity
field component, which in turn generates the m=0 magnetic
field. In the following, the m=0 and m=1 magnetic modes
compete via a modulation of the amplitude of the m=2 ve-
locity mode. However, these competing modes are funda-
mentally different from the cyclic dynamo D, which is pre-
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sented in the paper at hand. First, the m=2 nonaxisymmetric
hydrodynamic waves in our model emerge independently of
a magnetic field. Second, when a weak seed magnetic field is
introduced, the flows with m=2 wave motion generate a
dominant m=1 transverse dipole component. The axisym-
metric components of the magnetic field are relatively weak
as the power spectrum in Fig. 12(b) indicates. Third, there
are no competing modes observed. The relative alignment of
the magnetic and velocity fields is decisive if the magnetic
field grows or decays. In summary, our results are by no
means contradictory to the results reported in [14]. Differ-
ences in the forcing scheme and in the turbulence intensity
exist, which are crucial if an axisymmetric dipole is gener-
ated. This is pointed out in Sec. III.

PHYSICAL REVIEW E 80, 056304 (2009)

In conclusion, magnetic field generation due to wave mo-
tion was shown to exist in a spherical s272 dynamo model.
The transfer of these results to experimental flows is not
straightforward due to turbulence; nevertheless, wave effects
could play a role in laboratory dynamos and should be kept
in mind when modifying existing or designing new experi-
ments.
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